Librería de Comunicaciones Seguras

Descripción
Esta librería de comunicaciones seguras proporciona una capa de seguridad robusta para intercambios de datos entre microservicios, aplicaciones y usuarios finales.
Desarrollada en Python, la librería implementa los más recientes protocolos criptográficos utilizando bibliotecas como cryptography, PyNaCl y PyOpenSSL para asegurar que las comunicaciones sean privadas, auténticas y resistentes a ataques.
La API está diseñada para ser intuitiva y fácil de integrar en aplicaciones Python existentes, reduciendo la posibilidad de errores de implementación que podrían comprometer la seguridad. La librería maneja automáticamente aspectos complejos como la negociación de claves, la rotación de credenciales y la validación de certificados.
Tecnologías Utilizadas
Python
Lenguaje principal para el desarrollo de la librería
Cryptography
Biblioteca Python para operaciones criptográficas
PyNaCl
Implementación de libsodium para Python
gRPC
Framework de comunicación entre servicios
Protobuf
Serialización eficiente de datos estructurados
PyTest
Framework para pruebas automatizadas
Desafíos
Rendimiento vs. seguridad
Encontrar el equilibrio entre implementar protocolos criptográficos robustos y mantener un rendimiento óptimo.
Gestión de claves
Desarrollar un sistema seguro y usable para la gestión del ciclo de vida de las claves criptográficas.
Compatibilidad entre plataformas
Asegurar que la librería funcionara consistentemente en diferentes sistemas operativos y versiones de Python.
Soluciones
Implementaciones optimizadas
Utilicé implementaciones de Python altamente optimizadas de algoritmos criptográficos con soporte para aceleración por hardware cuando está disponible.
Rotación automática de claves
Implementé un sistema de rotación automática de claves en Python que mantiene la seguridad sin intervención manual.
Pruebas exhaustivas
Desarrollé una suite completa de pruebas con pytest que verifica la funcionalidad en múltiples plataformas y versiones de Python.
Galería

Arquitectura de la solución de encriptación

Dashboard de monitoreo de comunicaciones seguras

Ejemplo de implementación en una aplicación cliente
Ejemplo de Código
import scapy.all as scapy
import argparse
import time
import logging
from threading import Thread
from collections import defaultdict
import pandas as pd
import numpy as np
from sklearn.ensemble import IsolationForest
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
filename='ids.log'
)
logger = logging.getLogger('IntrusionDetectionSystem')
class PacketSniffer:
"""
A network packet sniffer that captures and analyzes network traffic.
"""
def __init__(self, interface=None):
"""
Initialize the packet sniffer.
Args:
interface: Network interface to sniff on (None for auto-detect)
"""
self.interface = interface
self.stop_sniffing = False
self.packet_count = 0
self.packet_stats = defaultdict(int)
self.connections = defaultdict(list)
self.anomaly_detector = None
def _packet_callback(self, packet):
"""
Process each captured packet.
Args:
packet: The captured packet
"""
self.packet_count += 1
# Extract packet information
if packet.haslayer(scapy.IP):
src_ip = packet[scapy.IP].src
dst_ip = packet[scapy.IP].dst
proto = packet[scapy.IP].proto
# Update statistics
self.packet_stats[src_ip] += 1
# Track connections
conn_key = f"{src_ip}:{dst_ip}:{proto}"
timestamp = time.time()
self.connections[conn_key].append(timestamp)
# Log packet info
if self.packet_count % 100 == 0:
logger.debug(f"Captured {self.packet_count} packets")
# Check for anomalies periodically
if self.packet_count % 1000 == 0:
self._check_for_anomalies()
def _check_for_anomalies(self):
"""
Check for anomalies in the captured traffic.
"""
# Prepare features for anomaly detection
features = []
# Calculate features for each source IP
for ip, count in self.packet_stats.items():
# Calculate connection rate (connections per second)
conn_count = sum(1 for key in self.connections if key.startswith(ip))
# Calculate packet rate
packet_rate = count / max(1, (time.time() - self.start_time))
# Calculate unique destinations
unique_dests = len(set(key.split(':')[1] for key in self.connections if key.startswith(ip)))
features.append([packet_rate, conn_count, unique_dests])
if not features:
return
# Convert to numpy array
X = np.array(features)
# If we have an anomaly detector, use it
if self.anomaly_detector is not None:
# Predict anomalies (-1 for anomalies, 1 for normal)
predictions = self.anomaly_detector.predict(X)
# Get anomaly scores
scores = self.anomaly_detector.decision_function(X)
# Log anomalies
for i, (pred, score) in enumerate(zip(predictions, scores)):
if pred == -1: # Anomaly detected
ip = list(self.packet_stats.keys())[i]
logger.warning(f"Anomaly detected from IP {ip} with score {score:.4f}")
# Additional analysis for the anomalous IP
self._analyze_anomalous_ip(ip)
def _analyze_anomalous_ip(self, ip):
"""
Perform detailed analysis on traffic from an anomalous IP.
Args:
ip: The IP address to analyze
"""
# Get all connections from this IP
ip_connections = [k for k in self.connections.keys() if k.startswith(ip)]
# Analyze connection patterns
if len(ip_connections) > 20:
# Check for port scanning (many different destination ports)
dest_ports = set()
for conn in ip_connections:
parts = conn.split(':')
if len(parts) >= 3:
dest_ports.add(parts[2])
if len(dest_ports) > 15:
logger.warning(f"Possible port scan detected from {ip} - {len(dest_ports)} different ports")
# Check for DoS attack (high packet rate)
packet_count = self.packet_stats[ip]
duration = time.time() - self.start_time
packet_rate = packet_count / duration
if packet_rate > 100: # Threshold for high packet rate
logger.warning(f"Possible DoS attack from {ip} - {packet_rate:.2f} packets/sec")
def train_anomaly_detector(self, duration=300):
"""
Train the anomaly detector on normal traffic.
Args:
duration: Duration in seconds to capture normal traffic for training
"""
logger.info(f"Training anomaly detector on normal traffic for {duration} seconds...")
# Start sniffing in a separate thread
self.start_time = time.time()
sniff_thread = Thread(target=self._sniff, args=(duration,))
sniff_thread.start()
sniff_thread.join()
# Prepare training data
features = []
for ip, count in self.packet_stats.items():
conn_count = sum(1 for key in self.connections if key.startswith(ip))
packet_rate = count / max(1, (time.time() - self.start_time))
unique_dests = len(set(key.split(':')[1] for key in self.connections if key.startswith(ip)))
features.append([packet_rate, conn_count, unique_dests])
if not features:
logger.warning("No packets captured during training period")
return
# Train the anomaly detector
X = np.array(features)
self.anomaly_detector = IsolationForest(contamination=0.05, random_state=42)
self.anomaly_detector.fit(X)
logger.info("Anomaly detector trained successfully")
# Reset statistics
self.packet_count = 0
self.packet_stats = defaultdict(int)
self.connections = defaultdict(list)
def _sniff(self, duration=None):
"""
Start sniffing packets.
Args:
duration: Duration in seconds to sniff (None for indefinite)
"""
self.stop_sniffing = False
self.start_time = time.time()
# Set timeout if duration is specified
timeout = None
if duration:
timeout = duration
# Start sniffing
scapy.sniff(
iface=self.interface,
prn=self._packet_callback,
stop_filter=lambda _: self.stop_sniffing,
timeout=timeout
)
def start(self):
"""
Start the packet sniffer in a separate thread.
"""
logger.info(f"Starting packet sniffer on interface {self.interface or 'default'}")
# Reset statistics
self.packet_count = 0
self.packet_stats = defaultdict(int)
self.connections = defaultdict(int)
self.start_time = time.time()
# Start sniffing in a separate thread
self.sniff_thread = Thread(target=self._sniff)
self.sniff_thread.daemon = True
self.sniff_thread.start()
def stop(self):
"""
Stop the packet sniffer.
"""
logger.info("Stopping packet sniffer")
self.stop_sniffing = True
if hasattr(self, 'sniff_thread') and self.sniff_thread.is_alive():
self.sniff_thread.join(timeout=2)
logger.info(f"Captured {self.packet_count} packets in total")
# Example usage
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Network Intrusion Detection System")
parser.add_argument("-i", "--interface", help="Network interface to sniff on")
parser.add_argument("-t", "--train", action="store_true", help="Train the anomaly detector")
parser.add_argument("-d", "--duration", type=int, default=300, help="Training duration in seconds")
args = parser.parse_args()
sniffer = PacketSniffer(interface=args.interface)
try:
if args.train:
sniffer.train_anomaly_detector(duration=args.duration)
sniffer.start()
# Keep the main thread running
while True:
time.sleep(1)
except KeyboardInterrupt:
print("
Stopping sniffer...")
sniffer.stop()
print("Sniffer stopped")
Habilidades Python
¿Interesado en un proyecto similar?
Si estás buscando implementar una solución en Python o tienes un proyecto en mente que requiera habilidades de desarrollo similares, no dudes en contactarme para discutir cómo puedo ayudarte.
Contactar